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Non-equilibrium rarefied flows are encountered frequently in supersonic flight at high alti-
tudes, vacuum technology and in microscale devices. Prediction of the onset of non-equi-
librium is important for accurate numerical simulation of such flows. We formulate and
apply the discrete version of Boltzmann’s H-theorem for analysis of non-equilibrium onset
and accuracy of numerical modeling of rarefied gas flows. The numerical modeling
approach is based on the deterministic solution of kinetic model equations. The numerical
solution approach comprises the discrete velocity method in the velocity space and the
finite volume method in the physical space with different numerical flux schemes: the
first-order, the second-order minmod flux limiter and a third-order WENO schemes. The
use of entropy considerations in rarefied flow simulations is illustrated for the normal
shock, the Riemann and the two-dimensional shock tube problems. The entropy generation
rate based on kinetic theory is shown to be a powerful indicator of the onset of non-equi-
librium, accuracy of numerical solution as well as the compatibility of boundary conditions
for both steady and unsteady problems.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

In regions of non-equilibrium, which are encountered frequently in supersonic flows at high altitudes and flows expand-
ing into vacuum, the macroscopic constitutive laws based on the continuum hypothesis tend to breakdown. The limits on the
conventional mathematical models are usually understood based on the Knudsen number ðKn ¼ k=LÞ where k is the average
distance traveled by the molecules between collisions, or the mean free path, and L is the characteristic length scale. When
the flow gradients are large, the length scale is of the same order as the mean free path and the transport terms in the con-
tinuum equations breakdown. When the continuum approximations are invalid, as in the case of a flow within a normal
shock wave and many other flow conditions, a model at the molecular level is required.

Mathematically, the motion of molecules in dilute gas is described by the Boltzmann equation which is valid for the entire
spectrum of Knudsen numbers. However, due to the multidimensionality of the phase space, which includes both physical
coordinates and velocity coordinates, and the complex non-linearity of the collision term, the numerical solution of the full
Boltzmann equation is challenging for practical problems. One approach to alleviate these difficulties has been to apply hy-
brid continuum and rarefied flow modeling. For example, a coupled solution of Euler equations in the inviscid flow domain
with the direct simulation Monte Carlo (DSMC) solution in non-equilibrium regions has been developed in Ref. [1]. Another
. All rights reserved.
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approach for hybrid continuum/rarefied flow simulations has been presented in Ref. [2], where both domains are solved with
particle-based methods. Alternatively, two deterministic numerical methods were used for both continuum and rarefied re-
gions in Ref. [3].

In all of the above hybrid continuum/rarefied simulations, a parameter characterizing the onset of non-equilibrium is
needed. A number of continuum breakdown parameters have been proposed in the past to predict the onset of non-equilib-
rium such as the local Knudsen number which is obtained as the ratio of a macroscopic flow parameter, like density or tem-
perature, to its gradient. Though these parameters provide an indication of the onset of rarefied flow effects, there is no direct
relation between such parameters and the physics of non-equilibrium. In this regard, the main goal of this paper is to inves-
tigate the use of entropy generation rate as an indicator of the onset of non-equilibrium. Additionally, we show that entropy
considerations in the deterministic simulations of rarefied flows are useful for analysis of accuracy of numerical solutions. In
particular, entropy-based analysis of numerical errors is developed with the use of a discrete version of Boltzmann’s H-
theorem.

It has been proposed in Ref. [4] that the entropy generation rate is likely to be one of the fundamental and most important
parameters to predict the onset of non-equilibrium. Thermodynamic equilibrium is characterized by zero entropy genera-
tion, and non-equilibrium can be identified by positive entropy generation. That is, a system progresses from one state of
thermodynamic equilibrium to a new state of thermodynamic equilibrium through the generation of entropy. Therefore,
a single parameter, entropy generation, is identified with thermodynamic non-equilibrium and therefore includes all of
the physics which will cause the continuum equations to break down. Also, due to its relation to the second law of thermo-
dynamics, entropy generation can capture non-physical numerical solutions that result from discretization errors.

The remainder of the paper is organized as follows: In Section 2, we present details of calculation of entropy, entropy gen-
eration rate and its relation to the onset of non-equilibrium. In Section 3, we discuss briefly, the Boltzmann model kinetic
equation and the collision models considered in this work, and in Section 4, we describe the numerical methods including
high-order flux schemes and time integration schemes. Section 5 presents and discusses the results of entropy-based anal-
ysis of numerical simulations for the normal shock wave, and one-dimensional and two-dimensional shock tube problems.

2. Entropy generation rate

The second law of thermodynamics postulates the existence of a state function called entropy and describes its proper-
ties. However, the most fundamental expression for entropy is given by the Boltzmann relation derived from statistical
mechanics
S ¼ k ln X ð1Þ
where S is the entropy, k is the Boltzmann constant and X is the statistical multiplicity of the gas. The quantity X represents
the total number of possible ways in which the total energy of the system can be distributed. In this paper, only the trans-
lational component of entropy is discussed since all computations reported are for a monatomic gas, argon.

The expression for translational entropy in terms of the velocity distribution function f can be derived (Eq. (37) in Ref.
[5]) as
Str ¼ k
Z 1

�1
f ð~cÞ 1� ln

h3f ð~cÞ
m3

 !" #
d~c ð2Þ
where h is the Planck constant, m is the atomic mass of the gas and c is the molecular velocity.
The entropy generation rate based on a kinetic description in terms of the velocity distribution function can be obtained

using the moment transfer equation [18]. The final expression [5] for the entropy generation rate based on kinetic theory is
given by
_S ¼ @S
@t
þr � k

Z 1

�1
~cf ð~cÞ 1� ln

h3f ð~cÞ
m3

 !" #
d~c

 !
ð3Þ
Since the formulation of this parameter involves the utilization of only statistical mechanics and kinetic theory, there are
no inherent mathematical limitations in its calculation. In this paper, Eq. (3) will be referred to as the Kinetic Theory-lhs
expression for entropy generation rate.

For small deviations from local equilibrium, the entropy generation rate can also be calculated as a function of macropa-
rameters only. This will be referred to as the Gas Dynamic expression [6,7] for entropy generation rate and is given by
_S ¼ U
T
þ j

T2 ðrT � rTÞ ð4Þ
where U is the viscous dissipation function and j ¼ lCp=Pr. For one-dimensional compressible flows, it can be simplified as
_S ¼ 4
3

l
T

@u
@x

� �2

þ j
T2

@T
@x

� �2

ð5Þ
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Schrock et al. [5] have shown that the location of initial increase in entropy production for a stationary normal shock wave
predicted by the Navier–Stokes equations is few mean free paths downstream of the location predicted by the DSMC tech-
nique, thereby indicating that the breakdown parameters based on continuum data may fail to capture the non-equilibrium
effects completely.

3. Boltzmann’s model kinetic equations

One class of model equations which are widely used to solve non-equilibrium rarefied flows are the Bhatnagar–Gross–
Krook (BGK) type equations [8,9] with a relaxation-type collision term. These equations are easier to solve when compared
to the original Boltzmann equation though the number of dimensions in the phase space remains the same as in the
Boltzmann equation. They also satisfy the H-theorem (which states that the production of entropy is always non-negative)
and reproduces a Maxwellian phase density at equilibrium [10]. According to the model kinetic equations, the phase density
f ðx;~c; tÞ is governed by the equation,
@f
@t
þ~c � @f

@~x
¼ �mðf � f0Þ ð6Þ
One of the collision relaxation models that is widely used is the ellipsoidal-statistical model (ES-BGK) [11] where f0 ¼ fG is an
anisotropic Gaussian given by
fG ¼
qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

detð2pTÞ
p e �

1
2ð~c�~uÞ

T T�1ð~c�~uÞ½ � ð7Þ
where
~c �~u ¼ ½cx � u; cy � v; cz �w�

qT ¼ 1
Pr

qRTI þ 1� 1
Pr

� �
q€

q€ ¼ hð~c �~uÞ � ð~c �~uÞf i
qRTI ¼ hð~c �~uÞ � ð~c �~uÞfci
with fc being a Gaussian of the form a expð�CC2 þ ciCiÞ and m being the collision frequency given by
m ¼ Pr � p
l

It should be observed that the collision frequency, m, involves the Prandtl number, Pr, as a free parameter. This allows the
ES collision model to reproduce transport coefficients, viscosity and thermal conductivity, corresponding to an arbitrary
Prandtl number.

The collision term of the BGK model can be obtained as a special case of the ES collision model by substituting Pr ¼ 1. We
indicate this collision term by �mðf � fcÞ.

The expression for the entropy generation rate based on kinetic theory was derived from the Boltzmann equation using
the fact that the entropy generation rate is the variation of entropy due to collisions. In DSMC simulations, the variation due
to collisions cannot be computed directly, whereas in an approach based on model kinetic equations, the explicit form of the
collision term facilitates this rate to be computed directly. The entropy generation rate calculated using the collision term is
given by
_Scoll ¼ �m
Z 1

�1
ðf ð~cÞ � f0ð~cÞÞ ln

h3f ð~cÞ
m3

 !
d~c ð8Þ
with f0 being an anisotropic Gaussian or an isotropic Gaussian (Maxwellian), depending on the collision model. This term will
be referred to as Kinetic Theory-rhs expression for entropy generation rate. It should be mentioned that this term will always
be positive if the collision model under consideration satisfies the H-theorem.

4. Numerical method

There have been various attempts in the past to apply different numerical schemes to obtain solutions to the model ki-
netic equations [12]. In general, the numerical method that is applied, should conserve mass, momentum and energy. It
should also satisfy Boltzmann’s H-theorem and ensure positivity of the solution. Here, we present the numerical method
in one spatial dimension and three dimensions in microscopic velocity. The governing kinetic equation (Eq. (6)), when sim-
plified to one-dimension, is given by
@f
@t
þ cx

@f
@x
¼ �mðf � f0Þ ð9Þ
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The space variable is discretized on a Cartesian grid defined by nodes xi. The microscopic velocities in the x; y; z direc-
tions, cx; cy; cz, are discretized using a conventional discrete ordinate method with uniform velocity abscissas. In the current
formulation, a discrete velocity ðcxðj1Þ; cyðj2Þ; czðj3ÞÞ of the grid is denoted by cj , where j ¼ ðj1; j2; j3Þ. Finally, we also choose a
time discretization with t ¼ nDt.

Upon approximation of the model kinetic equation by a Finite Volume Scheme, we obtain
@f
@t
¼ � 1

Dx
Fiþ1

2;j
� Fi�1

2;j

h i
� miðfi;j � f0i;j

Þ ð10Þ
where Fiþ1=2 and Fi�1=2 refer to the flux at the left and right faces of the ith cell.

4.1. First-order and second-order flux schemes

The first- and second-order schemes are as described by Mieussens and Struchtrup [12] and are given by
Fiþ1
2;j
¼ 1

2
cxðfiþ1;j þ fi;jÞ � jcxj Dfiþ1

2;j
� /iþ1

2
; j

� �h i
ð11Þ
where Dfiþ1
2;j
¼ fiþ1;j � fi;j and
/iþ1=2;j ¼
0 first-order
minmod Df n

i�1
2;j
;Df n

iþ1
2;j
;Df n

iþ3
2;j

� �
second-order

(

The minmod flux limiter used by the second-order scheme is defined [13] as
minmodða; b; cÞ ¼
minða; b; cÞ a > 0; b > 0; c > 0
maxða; b; cÞ a < 0; b < 0; c < 0
0 otherwise

8><
>:
4.2. Third-order WENO scheme

The third-order fluxes are computed using the Weighted Essentially Non-Oscillatory (WENO) schemes described by Zhou
et al. [14]. Here, we briefly describe only the most important aspects of the scheme. The general form of the numerical fluxes
evaluated at the interface using the third-order WENO scheme is given by
Fiþ1
2;j
¼
X

a
xahf f�iþ1

2;j
; fþ

iþ1
2;j

� �
ð12Þ
where xa are the weights. hf , in our computations is the local Lax–Friedrich’s flux function, given by
hf f�iþ1
2;j
; fþ

iþ1
2;j

� �
¼ 1

2
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þ fþ

iþ1
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� fþ

iþ1
2;j

� �h i
ð13Þ
The most important step in incorporating the third-order WENO scheme is the reconstruction step to obtain third-order
accurate values of f at the cell interface. Since this section deals with obtaining third-order accurate fluxes in the physical
space, we drop the velocity space index j for convenience. For a given cell Ii, we choose stencils SðiÞ based on cells adjacent
to Ii. In each of these stencils, we find a polynomial pðrÞðxÞ, where r ¼ 1;2 refers to the stencil index, such that
pðrÞ xiþ1
2

� �
¼ f xiþ1

2

� �
þ OðD2Þ ð14Þ
To find pðrÞ xiþ1
2

� �
, we compute constants, cðrÞi , that depend only on the mesh, such that
pð1Þ xiþ1
2

� �
¼ cð1Þ1 fi�1 þ cð1Þ2 fi

pð2Þ xiþ1
2

� �
¼ cð2Þ1 fi þ cð2Þ2 fiþ1

ð15Þ
The constants cðrÞi can be calculated by using Lagrange polynomials as explained by Shu [15]. Now, we find constants dr

such that a convex combination of pðrÞ xiþ1
2

� ����r ¼ 1;2;3;4 is third-order accurate:
X4

r¼1

drpðrÞ xiþ1
2

� �
¼ f xiþ1

2

� �
þ OðD3Þ ð16Þ
dr is referred to as the optimum weight of the WENO scheme. However, if the solution f ðxÞ has a discontinuity in some
of the stencils, the corresponding weights should be 0. To achieve this, the following form of non-linear weights is intro-
duced



Table 1
Conditions across a normal shock of Mach number M ¼ 1:4.

Property Upstream Downstream

Density 1.0 1.581
Velocity 1.278 0.808
Temperature 1.0 1.392
Pressure 1.0 2.2
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Fig. 1. Normal shock structure, M ¼ 1:4.
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xr ¼
arP4
s¼1as

ð17Þ
where
ar ¼
dr

ð�þ SIrÞ2
ð18Þ
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with � being a small positive number to avoid the denominator becoming 0. SIr is the smoothness indicator function defined by
SIr ¼
Z
jDxij2l�1 @lpðrÞðxÞ

@lx2

 !
dx ð19Þ
It should be mentioned that there are other smoothness indicators that are minor variations of the smoothness indicator
mentioned here. For each cell, the constants cðrÞi ; dðrÞ are precomputed. For a uniform mesh, it is sufficient to calculate them
once, whereas for a non-uniform mesh, they are cell-dependent and have to be computed for each cell.

4.3. Runge–Kutta time marching scheme

In order to ensure high-order accuracy in time integration, we use second- and third-order Total Variation Diminishing
(TVD) Runge–Kutta schemes described by Zhou et al. [14]. In the following discussion, f n is the solution at time step n. The
operator L refers to
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Second-order TVD:
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Third-order TVD:

f ð1Þ ¼ f n þ DtLðf nÞ

f ð2Þ ¼ 3
4

f n þ 1
4

f ð1Þ þ 1
4

DtLðf ð1ÞÞ

f nþ1 ¼ 1
3

f n þ 2
3

f ð2Þ þ 2
3

DtLðf ð2ÞÞ

ð21Þ
4.4. Calculation of entropy generation rate

The H-theorem states that the entropy generation rate, given by Eq. (4), is a strictly positive function. Due to numerical
errors in space, time and velocity discretization, the discrete solution of Eq. (10), in general, may not satisfy the discrete ver-
sion of the H-theorem. This is due to the fact that the discretized form of the moment transfer equation for entropy may not
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be satisfied for a distribution function which is obtained as a discrete solution of Eq. (10). The requirement that for a discrete
solution of Eq. (10), the entropy generation rates calculated using discrete versions of Eqs. (3) and (8) are equal in magnitude,
up to a certain precision, can be used as a criteria for accuracy of numerical simulations. The entropy generation rate ob-
tained using the collision term can be calculated using the discretized form of Eq. (8) given by
_Scolli ¼ �m
X

j

ðfi;j � f0i;j
Þ ln h3fi;j

m3

 !
Dcj ð22Þ
The discrete velocity models for Eq. (9) have been formulated [12,16,17] such that the positivity of the entropy generation
rate due to collisional relaxation, Eq. (22), is strictly enforced. However, numerical discretization as well as implementation
errors may lead to significant deviation between the transport, Eq. (3), and collisional, Eq. (22), expressions for entropy gen-
eration rate.

Below, we present calculations of entropy generation rates for a normal shock wave, one-dimensional and two-dimen-
sional shock tubes using various numerical schemes. The time and spatial derivatives in discretized form of Eq. (3) were
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computed using a second-order central difference scheme and a third-order WENO scheme, respectively. The calculation of
entropy generation rate is not computationally intensive and can be easily incorporated in the numerical procedure. As will
be shown below the discretized version of H-theorem can be used as a convenient and powerful indicator of the accuracy of
the numerical solution as well as of the onset of non-equilibrium.

5. Results and discussion

The model kinetic equations are applied to a steady problem and two unsteady problems. The steady problem considered
is that of a stationary normal shock wave. Later, we solve and present solutions for two unsteady problems involving regions
of non-equilibrium – a one-dimensional shock tube and a two-dimensional shock tube in which viscous effects are dominant
due to the presence of walls. Second-order accurate fluxes are obtained using the minmod flux limiter and the third-order
fluxes are computed using the WENO scheme. For the unsteady problems, second-order and third-order TVD Runge–Kutta
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schemes were used for time marching. All the numerical schemes were implemented in FORTRAN 90 and a parallel version
was implemented for the two-dimensional problem using the MPI library.

5.1. Normal shock wave

First, we consider the structure of a stationary normal shock wave for different values of the upstream Mach number,
M1 ¼ 1:4 and 3. The model kinetic equations were solved by using different flux schemes and the solutions obtained for
the density and temperature profiles are compared with the solutions obtained using DSMC simulations. The macroparam-
eters such as density, temperature and velocity in the computations were non-dimensionalized using the corresponding up-

stream values. In the figures below, the normalized temperature is T�T1
T2�T1

where T1; T2 are upstream and downstream values,



Fig. 8. Shock tube problem.

Table 2
1D shock tube: initial conditions to the left and right of interface.

Property Left zone Right zone

Density 1.0 0.1
x-Velocity 0 0
Temperature 1.0 1.0
Pressure 1.0 0.1
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respectively. The reference speed is c1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2RT1
p

and the reference time is L=c1 where L is the length of the domain (50k1 for
a Mach number, M ¼ 1:4) and k1 is the upstream mean free path. The specific entropy is non-dimensionalized by R, the uni-
versal gas constant. Entropy generation rate was non-dimensionalized by qc1R=L. The steady state solution was assumed to
have been reached when the L2 norms of the change in non-dimensional density and temperature were both less than 10�6.

The boundary conditions for the normal shock wave in argon gas with an upstream Mach number, M ¼ 1:4 are shown in
non-dimensionalized form in Table 1. The quantities upstream and downstream of the shock wave are related by the Ran-
kine–Hugoniot relations.

The third-order WENO scheme requires significantly less CPU time and number of iterations for convergence, when com-
pared to the other schemes. The DSMC solutions, shown in Figs. 1 and 2 for comparison with the kinetic solutions, were ob-
tained using the Fortran code DSMC1S.FOR by Bird [18], with 300 cells and a total of about 19,400 molecules. The number
density was 1020 and each simulated molecule represented 0:4� 1016 real molecules. The average number of molecules per
cell was 50 and 80 for cells upstream and downstream of the shock, respectively. A total of 8:74� 104 iterations with a time
step of 0:75� 10�6 were needed to attain steady state. The macroparameters were sampled over another 58,000 time steps.
The DSMC simulations took a total time of 1 h on a single processor. The deterministic kinetic solver took more than 24 h for
convergence using the first-order scheme, 14 h with the second-order scheme and 8 h with the third-order scheme. Note
that the same power-law viscosity model was used in the DSMC and the deterministic solver. The corresponding DSMC
molecular model is the variable hard sphere (VHS) model with parameters given for argon in Ref. [18].

The results obtained using the ES collision model agree well with those obtained using DSMC. The comparison between
density and temperature profiles obtained using different flux schemes and DSMC for the case of M ¼ 1:4 is shown in
Fig. 1(a) and (b). These were obtained using 50 cells in the physical space and 10 cells in each of the three directions in
the velocity space. Fig. 2 compares the density and temperature profiles obtained using the BGK ðPr ¼ 1Þ, ES ðPr ¼ 2=3Þ col-
lision models using third-order WENO scheme, with the DSMC solution. The BGK model predicts a steeper shock profile be-
cause it over-predicts the collision frequency.

One of the key aspects discussed in this paper is the entropy generation rate and its effectiveness in characterizing the
degree of non-equilibrium in the flow-field. Fig. 3 shows the specific entropy (entropy per unit mass) profile for the normal
shock for the three different flux schemes. With 200 cells, the second- and third-order schemes give specific entropy profile
with a maximum error of 0.04% but the second-order scheme does not predict the correct entropy generation rate profile.
The gas dynamic entropy generation rate computed using the different flux schemes do not differ significantly from each
other since the macroparameters obtained using different flux schemes differ only slightly. Hence in Fig. 4 we compare
the entropy generation rates obtained using the gas dynamic definition equation (4) for third-order flux scheme and the
kinetic theory definition equation (3) for the three different flux schemes. The entropy generation rate for all three flux
schemes was computed using high-order derivatives and hence any difference is entirely due to the difference in the solu-
tions for the distribution functions.

The entropy generation rate is shown to be a parameter that indicates the accuracy of the numerical solution. In the solu-
tion corresponding to 50 cells, shown in Fig. 4(a), all three flux schemes predict non-positive entropy generation rate which
is clearly unphysical. However, while the third-order WENO scheme predicts a very small region of non-positive entropy
generation rate, the second-order and first-order predict larger regions of non-positive entropy generation rate in the
flow-field. The entropy generation rate predicted using the WENO third-order flux scheme with 200 cells in the physical
space is positive in the entire flow-field and agrees well with the result predicted by the gas dynamic definition. Since,
the upstream Mach number for this particular case is not very high, we expect the gas dynamic expression, that is valid
for small deviations from equilibrium, to predict the regions of non-equilibrium accurately. The second-order solution using
200 cells does not indicate the presence of regions of non-positive entropy generation rate but does not agree well with that
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Fig. 9. Comparison of density and temperature profiles at non-dimensional time t ¼ 0:2 for different flux schemes using 1000 cells.

S. Chigullapalli et al. / Journal of Computational Physics 229 (2010) 2139–2158 2151
obtained using the gas dynamic expression. The maximum magnitude of non-positive entropy generation for the first-order
solution reduces from 120 for 50 cells (Fig. 4(a)) to 52 for 200 cells (Fig. 4(b)).

Entropy generation rate can also be an indicator of the correct implementation of the boundary conditions and size of the
computational domain. For the simulation of a stationary normal shock wave, the boundary conditions upstream and down-
stream of the shock are related by the Rankine–Hugoniot equations. Now, the values of the macroscopic properties that are
reconstructed from the discretized distribution functions do not satisfy the normal shock relations exactly and this shows up
as oscillations in the entropy generation rate at the boundaries as shown in Fig. 5(a). However, it does not show up in the
density, temperature or specific entropy profiles. Fig. 5(b) shows a comparison of the density profiles obtained using conser-
vative and non-conservative boundary conditions. Depending on the error, the non-conservative boundary conditions can
also lead to unrealistic phenomena such as the shifting phenomena which have been mentioned in earlier works [19,20].
The correct implementation of boundary conditions would be to solve the system of equations (mass, momentum and en-
ergy conservation) for the equilibrium distribution function that recovers the macroscopic properties exactly.
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We find that though the macroparameters are calculated based on a molecular approach, the gas dynamic expression for
the entropy generation rate itself is insufficient to fully describe the non-equilibrium regions in the flow-field.

Now we consider a case of a strong non-equilibrium, the normal shock at Mach number 3.0. The solutions were again
obtained using ES-BGK, BGK and DSMC computations. One of the important properties of a shock wave in a monatomic
gas is the overshoot of temperature associated with the longitudinal component of thermal velocities [21]. From the conser-
vation equations, it can be shown that, Tx is related to the number density n as follows
Tx

T1
¼ 1

3
5M2

1 þ 3
� �n1

n
� 5M2

1
n1

n

� �2
� 	

ð23Þ
Differentiating the above expression, it can be shown that Tx possesses a maximum if M2
1 is greater than 9/5. The analyt-

ical solution for Tx, can be used to compare the accuracy of the solutions obtained using different flux schemes. We present
results for the variation of ðTx � T1Þ=ðT2 � T1Þ as a function of ðn� n1Þ=ðn2 � n1Þ for M1 ¼ 3 to compare the results obtained
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using the second-order flux scheme and the third-order WENO scheme for a grid with 51 points. The solution is not fully
converged in this case, but it provides a clear picture of the differences between the solution obtained using the two
schemes. Fig. 7 shows a comparison of the variation of Tx and indicates that the result obtained by using 400 cells with
the second-order flux scheme can be reproduced with a lesser number of cells using the third-order WENO scheme and both
solutions match well with theory.

Fig. 6 shows the normalized density and entropy generation rate profiles for an upstream M ¼ 3:0. The length of the com-
putational domain was increased to 80k in order to fully capture the region of non-equilibrium ahead of the shock wave. The
number of cells was 400 in the physical space and the number of cells in the velocity space was increased to 14 in each direc-
tion. The results presented, compare the profiles obtained using both the BGK ðPr ¼ 1Þ and the ES ðPr ¼ 2=3Þ collision models.
Clearly, the BGK model again predicts a steeper shock profile when compared to the ES model.



Table 3
Initial conditions for the different cases.

Property Case 1 Case 2

q0 ðkg=m3Þ 1.604E�4 1.604E�5
T0 (K) 300 300
P0 (Pa) 10 1

Fig. 12. x-Velocity fields at four different instants of time.
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Comparisons between the entropy generation rates obtained using the gas dynamic and the kinetic theory expressions
show that, for a strong shock, the gas dynamic expression based only on the macroparameters fails to predict accurately,
the region of non-equilibrium upstream of the shock. Schrock et al. [5] mention that the entropy generation rate based



Fig. 13. Entropy fields at four different instants of time.
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on Navier–Stokes solutions do not completely capture the region of non-equilibrium in a shock wave. Note also the marked
increase in the value of the entropy generation rate – from about 0.3 to 30 – as the Mach number is increased from 1.4 to 3.

5.2. 1D shock tube

A well-known one-dimensional unsteady flow problem is the Riemann problem [22], which treats the development of a
flow due to an initial discontinuity. Removing the diaphragm separating the gas in the two reservoirs, results in a character-
istic wave system consisting, in general, of three waves, a shock wave, an expansion fan, and a contact discontinuity. The
inviscid shock tube problem can be solved exactly using gas dynamic theory. Fig. 8 shows a schematic of the Riemann
problem.

The diaphragm in the shock tube is initially located at x ¼ L=2 where L is the length of the domain. The argon gas to the
left of the interface is at a pressure of 10 Pa and temperature 300 K. This corresponds to a density of 1:603� 10�4 kg=m3. The
pressure on the right side of the interface is set to 1 Pa and temperature is set to 300 K. The initial conditions of various flow



Fig. 14. Entropy generation rate fields at four different instants of time for the two cases.
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parameters are presented in non-dimensional form in Table 2. For the computations shown, the number of cells in the phys-
ical space for a grid converged solution is 1000. The velocity space was discretized using a 40� 20� 20 grid. The entropy
generation rate corresponding to the Riemann problem includes the unsteady component as opposed to the normal shock
which is a steady state problem and is calculated using Eq. (3).

Entropy generation rate is shown to be a powerful indicator of grid convergence of the numerical solution in cases where
observation of only the macroscopic parameters like density and temperature fail to capture the fact that the solution is not
converged. Fig. 9 shows the density and temperature profiles obtained using various flux schemes and compares them with
the solution obtained using inviscid theory. It can be seen that the profiles obtained using various flux schemes agree extre-
mely well. The solutions obtained using first-order and second-order schemes differ by less than 1% and 0.1% from the third-
order scheme, respectively. Fig. 10 shows the entropy generation rate profiles obtained using the first-order and second-or-
der flux schemes and it can be clearly seen that the solution predicts regions of non-positive entropy generation rate. How-
ever, the entropy generation rate profile for solution obtained using the third-order WENO scheme, shown in Fig. 11, agrees
well with the gas dynamic expression and also with the entropy generation rate obtained using the collision term.
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The three peaks in the entropy generation rate profile in Fig. 11 a from right to left correspond to the location of shock,
contact discontinuity and rarefaction fan, respectively. Their locations and velocities can then be calculated by tracking these
peaks over time [23]. For comparison with experimental data, it is important to be able to predict the velocities of shockwave
and other flow structures. One method to calculate the shock wave velocity from numerical solution is to track the location
where the density is equal to a small fixed value above density of the unperturbed driven gas. For example, a value of 5% has
been used in the 5% density method [24]. Another method that can be used is the steepest gradient method where the loca-

tions of shockwave and contact discontinuity are points with maximum gradient in density, i.e. max j dqdx j
� �

.

Fig. 11 shows the locations of shock and contact discontinuity based on inviscid theory, ES-BGK solution, steepest gradi-
ent in density and 5% density methods. The maximum error in location of shock is less than 0.7% for the ES-BGK solution
using the peaks in entropy generation rate. Thus, entropy generation rate can be a useful quantity in calculating the location
and velocity of both the shock wave and contact discontinuity. This can be extended further to study the rarefaction effects
and shock speed attenuation by boundary layer interaction in 2D shock tube [25] as discussed below.

5.3. 2D shock tube

The dimensions of shock tubes that are typically used in laboratories, ensure that the boundary layer effects due to the
presence of walls are negligible and the problem can be considered to be one-dimensional for all practical purposes making
it similar to the Riemann problem described in the previous subsection. However, to get high Mach numbers, the initial pres-
sure ratio required across the diaphragm is extremely high thereby increasing the burden on vacuum pumps. In case a desk-
top shock tube were used, it is easier and faster to pump down the chambers to obtain the high pressure ratios due to their
smaller dimensions. But as the size of the shock tube is reduced, the boundary layer effects are no longer negligible [26].
Shocks are also widely used to induce faster combustion and their use in microdevices is an active area of research
[27,24]. Here, we consider the two-dimensional flow in a shock tube in which the viscous effects due to the presence of walls
are dominant and the shock is curved due to energy dissipation in the boundary layer. We present results for the simulation
of two cases, with Knudsen numbers (Kn) in the range 0.01–1, solved using the kinetic model equations.

The length and height of the shock tube were chosen to be 1 and 0.05 m, respectively. The pressures in the high and low
pressure zones for Case 1 were fixed such that the corresponding Knudsen numbers were 0.01 and 0.1, respectively. The tem-
peratures of the undisturbed driver and driven gases were set to 300 K. The temperature of the walls of the shock tube was
fixed at 300 K. To reduce the computational cost, the symmetry of the problem was used to reduce the domain size with the
use of a symmetry boundary condition at the plane of symmetry. The dimension of the phase space in the Kinetic WENO
solver is fixed as 320� 24� 20� 20� 10. The cells in the x-direction were uniformly spaced while a non-uniform cell size
was chosen for the y-direction in order to capture details close to the walls. A successive ratio of 1.1 was used for the non-
uniform cell size distribution in the y-direction. Case 2 was run with the same grid resolution and pressure ratio but at a
lower pressure as shown in Table 3. The Knudsen number in the left zone is 0.1 and in the right zone is 1.0. Case 2 gives
profiles very different from Case 1 that are the manifestation of rarefaction effects.

Figs. 12 and 13 show the maps of x-velocity and entropy at four different instants of time t� ¼ 1:06, 2.12, 4.24, 6.37 where
t� ¼ 1 corresponds to the theoretical time it takes for the shock to move a distance equal to the width of the shock tube. As
time progresses, the zone of non-equilibrium expands and its extent can be found from the entropy generation rate profiles.
At the plane of symmetry, the contours of entropy generation rate show three peaks corresponding to three different regions
of non-equilibrium – the compression wave, the contact discontinuity, and the rarefaction wave. At the walls of the shock
tube, the interactions between the boundary layer and the wave system, lead to a more complicated interaction indicating
only one distinct peak in the entropy generation rate contours. Also, Fig. 14 shows that the maximum entropy generation
rate in an unsteady shock tube occurs in the boundary layer and shock wave interaction region.

6. Conclusions

We have proposed the use of a discrete version of H-theorem for analysis of numerical accuracy of rarefied flow simula-
tions. Additionally, entropy generation rate has been investigated as an indicator of the onset of non-equilibrium which can
be applied as a breakdown parameter in hybrid continuum/rarefied flow simulations. The numerical solution of Boltzmann
model kinetic equations is obtained using the first-, second- and third-order flux schemes in the finite volume method. The
solution is verified by comparison with the DSMC simulations for a normal shock problem. For a normal shock at a low Mach
number, M = 1.4, the entropy generation rate based on the gas dynamics and kinetic theory agree well. However, at a higher
Mach number, M = 3, the gas dynamic entropy generation rate is shown to deviate significantly from the that based on ki-
netic theory. The use of entropy to assess equilibrium breakdown in unsteady flows is elucidated on the examples of Rie-
mann problem and two-dimensional shock tube. For 1D shock tube, the maximum values of entropy generation rate
correspond to the instantaneous locations of shock wave and contact discontinuity, whereas the zone of rarefaction waves
are characterized by a much lower values of entropy generation. The maximum entropy generation rate in a 2D shock tube
occurs in the boundary layer and shock wave interaction region. The simulations indicate that a non-dimensional entropy
generation rate of 0.1 corresponds to a significant deviation from equilibrium and strong non-equilibrium can be character-
ized by a value greater than 0.3. Entropy generation rate has shown to be a powerful indicator for both accuracy of the
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numerical solution in terms of mesh convergence and compatibility of boundary conditions as well as for identification of
continuum breakdown.

Acknowledgments

This work has been supported by Purdue Research Foundation and Department of Energy [National Nuclear Security
Administration] under award No. DE-FC52-08NA28617.

References

[1] R. Roveda, D.B. Goldstein, P.L. Varghese, Hybrid Euler/particle approach for continuum/rarefied flows, Journal of Spacecraft and Rockets 35 (1998) 258–
265.

[2] J.M. Burt, I.D. Boyd, A hybrid particle approach for continuum and rarefied flow simulation, Journal of Computational Physics 228 (2009) 460–475.
[3] V. Kolobov, R. Arslanbekov, V. Aristov, A. Frolova, S. Zabelok, Unified solver for rarefied and continuum flows with adaptive mesh and algorithm

refinement, Journal of Computational Physics 223 (2007) 589–608.
[4] C.R. Schrock, R.J. McMullan, J.A. Camberos, Calculation of entropy generation rates via DSMC with application to continuum/equilibrium onset, in:

Proceedings of the 38th AIAA Thermophysics Conference, AIAA Paper 2005-4830, Toronto, Ontario, Canada, 2005.
[5] C.R. Schrock, R.J. McMullan, J.A. Camberos, Continuum onset parameter based on entropy gradients using Boltzmann’s H-theorem, in: Proceedings of

the 43rd AIAA Aerospace Sciences Meeting and Exhibit, AIAA-2005-967, Reno, Nevada, 2005.
[6] G.F. Naterer, J.A. Camberos, Entropy and the second law fluid flow and heat transfer simulation, Journal of Thermophysics and Heat Transfer 17 (3)

(2003) 360–371.
[7] L. Boltzmann, Lectures on Gas Theory, Dover Publication, 1995.
[8] P.L. Bhatnagar, E.P. Gross, M. Krook, A model for collision processes in gases. I. Small amplitude processes in charged and neutral one component

systems, Physical Review 94 (1954) 511.
[9] M. Krook, Continuum equations in the dynamics of rarefied gases, Journal of Fluid Mechanics 6 (1959) 523.

[10] P. Andries, P.Le. Tallec, J. Perlat, B. Perthame, The Gaussian–BGK model of Boltzmann equation with small Prandtl numbers, European Journal of
Mechanics B: Fluids 19 (2000) 83.

[11] L.H. Holway, New statistical models for kinetic theory: methods of construction, Physics of Fluids 9 (1966) 1658.
[12] L. Mieussens, H. Struchtrup, Numerical comparison of Bhatnagar–Gross–Krook models with proper Prandtl number, Physics of Fluids 16 (8) (2004)

2797–2813.
[13] A. Harten, S. Osher, Uniformly high-order accurate non-oscillatory schemes, SIAM Journal of Numerical Analysis 24 (1987) 279–309.
[14] T. Zhou, Y. Li, C.-W. Shu, Numerical comparison of WENO finite volume and Runge–Kutta discontinuous Galerkin methods, Journal of Scientific

Computing 16 (2) (2001) 145–177.
[15] C.-W. Shu, Essentially Non-Oscillatory and Weighted Essentially Non-Oscillatory Schemes for Hyperbolic Conservation Laws, NASA/CR-97-206253,

NASA Langley Research Center, Hampton, VA, November 1997.
[16] L. Mieussens, H. Struchtrup, Discrete-velocity models and numerical schemes for the Boltzmann–BGK equation in plane and axisymmetric geometries,

Journal of Computational Physics 162 (2) (2000) 429–466.
[17] A. Frezzotti, Numerical investigation of the strong evaporation of a polyatomic gas, in: Proceedings of the 17th Symposium on Rarefied Gas Dynamics,

1991.
[18] G.A. Bird, Molecular Gas Dynamics and the Direct Simulation of Gas Flows, second ed., Oxford University Press, New York, 1994.
[19] T. Ohwada, Structure of normal shock waves: direct numerical analysis of the Boltzmann equation for hard-sphere molecules, Physics of Fluids 5 (1)

(1993) 217–234.
[20] P. Degond, J.-G. Liu, L. Mieussens, Macroscopic fluid models with localized kinetic upscaling effects, Multiscale Modelling and Simulation 5 (3) (2006)

940–980.
[21] S.-M. Yen, Temperature overshoot in shock waves, Physics of Fluids 9 (7) (1966) 1417–1418.
[22] S. Schreier, Compressible Flow, second ed., Wiley, New York, 1982.
[23] S. Chigullapalli, A. Venkattraman, A.A. Alexeenko, M.S. Ivanov, Non-equilibrium flow modeling using high-order schemes for the Boltzmann model

equations, in: Proceedings of the 40th Thermophysics Conference, AIAA Paper 2008-3929, Seattle, Washington, 2008.
[24] D.E. Zeitoun, Y. Burtschell, I.A. Graur, M.S. Ivanov, A.N. Kudryavtsev, Ye.A. Bondar, Numerical simulation of shock wave propagation in microchannels

using continuum and kinetic approaches, Shock Waves 19 (4) (2009) 307–316.
[25] S. Chigullapalli, A. Venkattraman, A.A. Alexeenko, Modeling of viscous shock tube using ES-BGK model kinetic equations, in: Proceedings of the 47th

AIAA Aerospace Sciences Meeting, AIAA Paper 2009-1317, Orlando, FL, 2009.
[26] F. Iancu, N. Muller, Efficiency of shock wave compression in a microchannel, Microfluidics and Nanofluidics 2 (2006) 50–63.
[27] M. Brouillette, Shock waves at microscales, Shock Waves 13 (2003) 3–12.


	Entropy considerations in numerical simulations of non-equilibrium rarefied flows
	Introduction
	Entropy generation rate
	Boltzmann’s model kinetic equations
	Numerical method
	First-order and second-order flux schemes
	Third-order WENO scheme
	Runge–Kutta time marching scheme
	Calculation of entropy generation rate

	Results and discussion
	Normal shock wave
	1D shock tube
	2D shock tube

	Conclusions
	Acknowledgments
	References


